您好,欢迎进入厦门雄霸电子商务有限公司!

全国咨询热线

18059884797

LC1000-SSP7车用斯特林发动机控制系统(获专利技术)

发布时间:2024-03-01 17:53浏览次数:


LC1000-SSP7车用斯特林发动机控制系统(获专利技术)

LC1000-SSP7.jpg

 

   摘要:LC1000-SSP7本文介绍的斯特林发动机起动制动及工况控制系统,通过向处于等温膨胀过程相位的工作腔加注工质,实现起动运行;通过向处于等温压缩过程相位的工作腔加注工质,实现制动运行;通过向所有工作腔加注或泄减工质,同时增大或减小燃油和空气供给量,实现加速或减速运行。起动制动由发动机转子相位信号和输入的信号控制。加速减速由工质均衡器室的压力升降控制。用于汽车,斯特林发动机的起动信号、起动时的空气燃油供给信号、点火信号都由同一开关控制;斯特林发动机的加速信号由加速踏板控制;斯特林发动机的减速信号、制动信号、车轮制动信号都由制动踏板控制。操作规程与内燃机汽车基本相同。这种汽车的发动机和车辆同时制动新技术,提高了车辆安全性。

  关键词:汽车;斯特林发动机;起动;制动

  1. 引言

  LC1000-SSP7早在上世纪30年代,欧美国家就试图将斯特林发动机用作汽车发动机[1]。但是,体积大、密封难这两大障碍始终阻碍其发展。尽管如此,直到70年代,斯特林发动机仍被认为是很有前途的车用发动机[1]。进入80年代,以上观点发生了转变,1982年3月,在英国伦敦里丁大学召开的第一届国际斯特林发动机学术会议认为:在车用发动机领域,斯特林发动机不能与内燃机竞争,其发展方向确定为功率大约50KW以内的低功率发动机,应用于水下动力、垃圾填埋气发电、热电联供、太阳能热发电等领域[2]。

  2007年12月,中国人发明的斯特林可逆热机消除了体积大、密封难这两大障碍[3]。斯特林可逆热机结构简单紧凑,相同工作容积,其整机体积不及内燃机的一半,零件减少三分之一以上。斯特林可逆热机采用两级密封技术,将动密封转变为静密封,做到可靠密封。这两个问题得到解决,斯特林发动机其他优势就充分显现。

  LC1000-SSP7斯特林可逆热机作发动机,除了具有斯特林发动机固有的节能环保无噪音等优势外,独特的起动制动及工况控制系统更提升了发动机的安全性、经济性和操作性能。在此方面,不仅内燃机不能与之相比,就是现有的其他斯特林发动机也望尘莫及。起动运行是在燃烧供热开始的同时,向处于等温膨胀过程的工作腔加注工质,膨胀压力增高,发动机迅速起动;制动运行是在发动机高速运转时,向处于等温压缩过程的工作腔加注工质,发动机迅速减速;工况控制是通过同步增减处于运行状态发动机工作腔的工质和燃油空气供给量,使发动机输出功率相应增减,而热机效率保持基本不变。

  而内燃机起动靠专用的起动电机,没有工质制动的良好条件,工况控制只有增减燃油量一条途径,燃料过多时燃烧不完全,热机效率波动大。曾经拥有的竞争优势已丧失,被斯特林发动机取代是必然趋势。

  斯特林可逆热机的起动制动及工况控制系统的工作原理是利用工质均衡器室的压力是各工作腔控制基准和等温过程的压力波动规律。

  2. 起动制动及工况控制系统

  2.1系统构成及运行

  起动制动及工况控制系统由高压工质罐、起动制动控制器、工质均衡器室、

图一   斯特林发动机起动制动及工况控制系统

  减速阀、加速阀、减压阀一、减压阀二、回压阀、低压工质罐、工质增压泵等10个部件组成,由起动制动控制信号、转子相位信号、工况控制信号等3个信号源控制,完成起动、加速、减速、停机等4种操作。各部件的连接关系如图一所示。方框代表部件或信号,箭头方向代表工质流动方向或信号传递方向。

  高压工质罐有3个流出端口和1个流入端口。1个流出端口与起动制动控制器连接;1个流出端口与减压阀二连接;1个流出端口与减压阀一连接;流入端口与工质增压泵连接。

  起动制动控制器由4个单向阀和1个接收转子相位信号和起动制动控制信号、控制4个单向阀开关的装置组成。4个单向阀的进口端连接高压工质罐,出口端分别连接4个工作腔。

  工质均衡器室是将4个工质均衡器封闭在内的1个密闭容器,分别与减速阀的进口端和加速阀的出口端连接,并有1 个控制燃油量和空气量的压力信号输出口。4个工质均衡器分别连接4个工作腔。

  减速阀是进口端与工质均衡器室连接,出口端与低压工质罐连接的阀门。开闭受工况控制信号控制。


18059884797