您好,欢迎进入厦门雄霸电子商务有限公司!

全国咨询热线

18059884797

ICS-TRIPLEX-T8110B 热电(余热发电)行业的DCS集散系统或PLC系统开发

发布时间:2024-02-27 09:08浏览次数:

ICS-TRIPLEX-T8110B  热电(余热发电)行业的DCS集散系统或PLC系统开发

ICS-TRIPLEX-T8110B.jpg

1、ICS-TRIPLEX-T8110B  循环流化床特点
循环流化床锅炉(以下简称CFB)是一种高效率、低污染、清洁燃烧锅炉,其主要特点是通过炉内强烈的喘流运动,使燃料和脱硫剂经过多次循环,反复地进行低温分段燃烧和脱硫反应,从而达到约90%的脱硫效果,燃烧效率接近煤粉炉。CFB不但燃烧完全,Nox的排放量低,而且燃料适应性广,可以烧劣质煤、废料、垃圾等。CFB锅炉由布风装置、密相区、稀相区、炉内受热面、气固物料分离装置、返料装置、尾部受热面及床外热交换器等部分组成。
   ICS-TRIPLEX-T8110B     CFB比起其它类型锅炉,其燃烧过程比较复杂,不但需要控制的参数多,而且参数之间相互关联,使得操作难度加大。如果操作不当,非但不能发挥CFB的优点,反而会造成锅炉结焦、熄火和停产等不良后果。因此如何采取先进的控制方案对CFB运行的重要参数如床温、一次风、二次风、给煤量和返料量协调控制,是CFB成功运行的关键。
    ICS-TRIPLEX-T8110B   多年来,湖南良源自动化(该公司致力于自动化系统集成、信息化系统(含ERP系统\MIS系统和MRP系统)开发、DCS系统开发、PLC系统开发、低压配电柜成套、变频柜软起柜等传动系统开发)的工程师们一直致力于CFB燃烧模型的研究,同时吸取了我们在沸腾炉和35t/h CFB控制的成功经验,设计了75T/h CFB自控系统方案,并在行业内得到成功应用。该装置由数据采集系统DAS,模拟量调节系统,顺序控制系统SCS,炉膛安全监控系统FSSS等组成。
2、自控系统方案说明
    2.1数据采集系统DAS
  ICS-TRIPLEX-T8110B    DAS系统连续采集机组的模拟量、开关量等信息,将运行参数、输入输出状态、操作信息和异常情况等数据实时地提供给运行人员,指导他们安全可靠地操作,同时还进行数据记录和储存,供事故分析。
    2.1.1信号处理
    由现场控制站实现所有I/O信号的采样、滤波、工程单位换算、累积等。本系统可处理包括4~20mA(含两线制变送配电器)、0~5Vac、热电阻、热电偶等模拟信号和有源(包括直流和交流)触点和无源触点信号。
    2.1.2显示
    HMI软件基于Windown NT/2000。该软件采用了最先进的软件设计技术,具有丰富的动画功能和图形库,采用作图软件可画出直观的工艺流程图、棒图、控制回路图、趋势图等。用户可在画面中任意定义和绘制操作按钮,画面中每个按钮都可定义相应的热键,可通过鼠标点击式键盘热键操作,每个操作按钮都可定义其操作权限。可通过打开新画面、弹出式嵌入新窗口来调显不同画面,可对画面进行缩放和改变各种风格。操作员可通过各种风格的按钮、滑动杆、旋转指针等进行直观的参数修改操作。
    2.1.3报警事件指示和管理
    报警事件管理软件是基于OPC报警事件标准的客户端应用软件,可对任何来自OPC报警事件服务器的报警、事件进行管理。
    ICS-TRIPLEX-T8110B  报警事件服务器提供各种类型的报警和事件监视,提供多达1000个的报警优先级,可将系统分成任意区域构成,各监控操作站可按报警事件类型、优先级、报警点或区域等有选择进行筛选和响应。
    报警事件管理软件提供灵活的检索、筛选和打印等功能。同时可按不同的报警点和/或不同优先级设置不同声音文件,通过操作计算机配置的多媒体音响进行语音报警。
    2.1.4历史数据存取、显示
    历史服务器也是OPC的客户端软件,可实现数据的周期采集记录,定时采集记录和事件触发记录等。
    2.2模拟量调节系统
    2.2.1   几个主要的控制回路
    2.2.1.1   锅炉主控
循环流化床锅炉的主控采用前馈加反馈的控制方式(复合调节系统)。在反馈调节系统中加入对于主要扰动λ(x)的前馈调节,构成了前馈-反馈调节系统,当扰动λ(x)发生后,前馈调节的作用是及时地补偿扰动对被调量的影响,而反馈调节的作用则是保证调节量的偏差在允许的约定范围内,这样,系统即使在大而频繁的扰动下,依然可以获得优良的控制品质。
    2.2.1.2   燃煤主控
燃煤主控是一个典型的反馈调节回路,由于调节系统是按被调量与给定值的偏差进行调节的,因此,在调节对象受到扰动作用时,只有在被调量出现偏差后才开始调节,调节只为尽快地消除偏差。
另外,在燃烧控制中,为了提高循环流花床锅炉燃烧效率,在燃烧控制策略中运用了双交叉燃烧控制和氧量修正调节相结合的控制方法。
双交叉燃烧控制
    ICS-TRIPLEX-T8110B  双交叉燃烧控制系统是根据主蒸汽负荷对锅炉的燃烧系统进行调节,以达到稳定蒸汽母管压力的目的。具体包括燃料调节和风量调节两个控制部分,这两部分分别由各自的调节器及高低选择器组成并以流量为基准信号。
燃料调节控制:
自风量主控系统的总风量需求与锅炉炉主控的燃料量指令经过低选与BTU补偿后燃料量通过PID运算去控制所有锅炉燃料设备。其中最主要的是两台给煤机,通过控制给煤机的传动速度来调节给煤量。而经过低选的燃料控制需求量与炉燃料指令的偏差假如其值小于1%,则去限制氧量修正调节器,设置氧量修正调节器PID的偏差为0,使调节器维持原来的状态。如果大于1%,则燃料控制系统的限制功能就不起作用。这个具体的限制值可以根据实际的工况和要求自己设定。氧量调节系统控制站的结果就进一步去调节风主控,控制总风量。
风量调节控制
  ICS-TRIPLEX-T8110B    燃料主控系统的总燃料需求量与锅炉炉主控的风量指令经过高选,与经氧量修正调节系统解耦后的需求量,通过PID调节控制风量主控。而经高选后的值与炉主控指令的偏差如果小于0%,则去限制氧量修正调节器,使其维持原状,不起作用。假如大于0%,氧量调节器就去控制二次风调节风门,间接的控制总风量。
    炉主控的燃料指令、风量指令都是经过对主蒸汽压力与主蒸汽流量函数调节运算后得出的,然后直接与燃料主控、风主控相连,调节通道短。但是由于燃料主控控制的设备相对较多,反应的时间就相对较长。所以从风量控制系统、燃料控制系统工作原理可看出,当负荷增加时,首先提高风量主控的给定值。风量流量增加,然后燃料流量调节器的给定值才随着上升;当负荷下降时,燃料流量的设定值首先下降,流量减小,尔后风主控流量的设定值随之下降。同时燃料、风量进一步控制的氧量修正系统反过来又控制风主控系统,层层相扣。正是通过锅炉主蒸汽压力与流量相互交叉作用燃料、流量控制部分的。
    交叉控制系统自动的投入也是如此,首先必须投入风主控自动,然后是燃料主控,最后才是炉主控。当发生故障,使得风主控撤出自动,炉主控、燃料主控随之撤出自动。
    双交叉控制的好处在于:即使负荷不稳定,燃料流量信号干扰大,燃烧仍能维护在无黑烟状态,同时提高了系统的负载响应。因此双交叉燃料控制系统无论在负荷上升或下降时,能满足“负荷增加时,先增加风量,后增加燃料量;负荷减少时先减少燃料量,后减少空气量”的工艺要求。
    双交叉燃烧控制系统是根据主蒸汽负荷对锅炉的燃烧系统进行调节,以达到稳定蒸汽母管压力的目的。它具体又分为双交叉燃料调节和双交叉风量调节两个控制部分。
从双交叉燃料和风量调节框图我们可以看出采用双交叉控制的好处在于:即使负荷不稳定,燃料流量信号干扰大,燃烧仍能维护在无黑烟状态,同时提高了系统的负载响应。因此双交叉燃料控制系统无论在负荷上升或下降时,能满足“负荷增加时,先增加风量,后增加燃料量;负荷减少时先减少燃料量,后减少空气量”的工艺要求。而循环流化床锅炉控制策略中运用氧量修正调节是为了能够更平稳的控制燃烧系统,使控制更加精确,而且使锅炉的风燃比一直保持在一定的范围,保证了燃料燃烧的更彻底。
氧量修正调节:
    燃烧控制系统中,增加的氧量修正调节系统为了能够更平稳的控制燃烧系统,使控制更加精确,而且使锅炉的风燃比一直保持在一定的范围,保证了燃料燃烧的更彻底。
    从引风机送往大气的烟气中,检测出氧量大小,O2量过大,说明风量过剩,会导致能量不必要的损失,造成床温过低;氧量过小,会引起燃料不完全燃烧,严重的引起锅炉熄火。所以O2溶度的高低是衡量锅炉热效率的重要指标之一,而且通过对O2溶度的检测和控制是实现节能的主要手段。
    从锅炉的燃烧过程来看,空气进入炉膛与燃料一起燃烧后,经过炉膛、对流层、过热器和空气预热器后,再经烟道由烟囱排入大气。
    当空气流量出现扰动后,需经过较长的滞后时间才能反映在O2溶度分析仪上,其特征是:纯滞后时间长,调节通道长而干扰通道短。对于这种特征的控制对象,若采用常规PID进行调节,易波动,达不到平稳控制的工艺要求。为此,采用直接插入型氧化鋯O2溶度分析仪和采用采样PI控制的方式及实行燃料、风量相互交叉限制氧量调节器。
氧量控制采用采样PI控制方法可以克服纯滞后对系统调节品质的影响,采用PI控制法是指在每一个采样周期内,控制作用只在周期开始时的短时间内动作的一种控制方式.
通常为了减小超调,希望采样周期ST取大一点,如果加于生产过程的主要干扰的最短周期小于采样周期ST时,则不能有效地抑制扰动,因此采样PI控制的限制条件是采样周期ST须小于主要干扰最短周期,具体限制值依实际运行情况而定。
锅炉维持在最佳燃烧状态,需一个合理的理论风燃比系数和最低的过剩空气率(μ): [O2]是指排烟中的O2含量
    由上式可看出过剩空气率(μ)与[O2]有明确的函数关系,所以μ则由O2量调节器进行控制,通过对氧量调节器输出的修正,得到空气过剩率(μ),然后补正空气流量调节器的给定值即实际风量=理论风量+过剩风量。有了这个实际风量值,就能够确定一个相对恒定的风燃比。为了锅炉的安全运行在开环控制逻辑中,增加了风燃比低低引起MFT(主燃料跳闸)的保护。而且还设定了风燃比低报警信号,允许运行人员有2分钟的时间处理,避免引起MFT。通过氧量修正,对整个燃烧控制系统实行微调。


18059884797